Drinking Water Disinfection
For Operators, Town Councils, and LSD Committees
Water Supply Sources

• Surface Water:
 • Water that runs off surfaces and collects in lakes and ponds
 • Surface water withdrawn using intake

• Groundwater:
 • Precipitation or surface water that has filtered through the soil to underlying aquifers
 • Groundwater withdrawn using well and pump
Surface Water Quality

• Affected by:
 • Rainfall intensity and duration
 • Soil composition
 • Slope of ground
 • Vegetation on the ground
 • Human activities and structures (agriculture, cities, industry, dams, deforestation and recreation.)
Sources of Contamination

• At the source of supply
• At the treatment plant
• In storage systems or reservoirs
• In distribution systems:
 • Bacterial re-growth is common in dead end water mains
 • High sediment accumulation breeds bacteria – flushing is required
• Cross connections:
 • Cross connection can be deadly
 • Important to have a CCC program in place
• Infiltration:
 • Negative pressure can draw contaminants into pipe through any leaks that may be present
• Water main breaks:
 • Keep positive pressure in main before repairs
 • Ensure contaminants do not enter water main
Disinfection

• Goal of water disinfection is to kill and/or inactivate waterborne microorganisms that can cause illness or death

• Typical waterborne microorganisms of concern include
 • Bacteria
 • Viruses
 • Protozoa

• Dedicated disinfection step is required to inactivate the microorganisms
E. coli

- *E. coli* used as definite indicator of recent faecal contamination of water
- Maximum Allowable Concentration (MAC) : none detectable/100 mL sample
- *E. coli* can cause gastrointestinal issues such as vomiting, diarrhea – some can be life threatening
- Walkerton, Ont., 2000 - 2300 people fell ill, 7 died due to *E. coli* and *Campylobacter* contamination
Protozoa

• Some protozoa are pathogenic, can live in the gut of animals or humans
• Can enter drinking water through direct or indirect contamination with animal or human faeces
• *Giardia* and *Cryptosporidium* are protozoans that are most often associated with drinking water contamination and water borne illness
• The absence of *E. coli* in a sample does not necessarily mean that pathogenic protozoans are not present
Giardia and Cryptosporidium

• **Giardia**
 - *Giardia* causes the illness giardiasis; the illness is also known as beaver fever
 - Can result from contamination from beaver, muskrat or cattle faeces
 - Causes gastrointestinal symptoms such as diarrhea, vomiting, weight loss etc.

• **Cryptosporidium**
 - *Cryptosporidium* causes the illness cryptosporidiosis
 - Commonly caused by direct or indirect contamination with livestock
 - Causes gastrointestinal symptoms such as diarrhea, vomiting, weight loss etc.
Viruses

• Main form of contamination is through human faeces. Can be from sewage plant effluents, septic tank leakages, etc.

• Viruses common for water borne illness include Enterovirus, Norovirus and Rotavirus

• Symptoms from consuming contaminated water can include diarrhea, vomiting, dehydration, fever, headaches
Boil Water Advisories

- Boil Water Advisories (BWA) are put in place when there is a risk of or known contamination of the drinking water supply
- Typically are put in place when there are known issues with the disinfection system such as
 - Not enough disinfectant in the system
 - Mechanical failure
 - Changes in incoming water quality due to weather
 - Disturbance in distribution system
Boil Water Advisory Actions

• The community must be notified when a boil water advisory is initiated

• Consumers may be alerted through:
 • Local media outlets (e.g. radio, television, and newspapers)
 • Dropping-off notices in mailboxes
 • Placing warning signs on taps in public places (e.g. gas stations, restaurants, campgrounds, schools)

• For Boil Water Advisories lasting more than one month, remind residents monthly

• More information can be found here:
Instructions to Provide to Consumers During a BWA

- Water for the following activities must be boiled:
 - Drinking
 - Preparing infant formula
 - Preparing juice and ice cubes
 - Washing fruits and vegetables
 - Cooking
 - Dental Hygiene

- Cold water taps should be used; do not consume water from hot water taps
- Hold water at a rolling boil for at least one minute
- Water can be boiled in a pot or kettle on a stove
Boil Water Advisories

- Newfoundland and Labrador have a code system for categorizing reasons for a BWA

<table>
<thead>
<tr>
<th>BWA Code</th>
<th>Description</th>
<th>Number in Place ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>No disinfection system</td>
<td>32</td>
</tr>
<tr>
<td>B1</td>
<td>Off because of taste & odour</td>
<td>6</td>
</tr>
<tr>
<td>B2</td>
<td>Off because of perceived health risk of chlorination</td>
<td>1</td>
</tr>
<tr>
<td>B3</td>
<td>Off because of lack of funds to operate</td>
<td>12</td>
</tr>
<tr>
<td>C1</td>
<td>Off due to maintenance or mechanical failure</td>
<td>36</td>
</tr>
<tr>
<td>C2</td>
<td>Off due to lack of chlorine or other disinfectant</td>
<td>1</td>
</tr>
<tr>
<td>D1</td>
<td>Water distribution maintenance/repair</td>
<td>19</td>
</tr>
<tr>
<td>D2</td>
<td>Cross-connection discovered</td>
<td>8</td>
</tr>
<tr>
<td>D3</td>
<td>Inadequately treated water sent to dist. System</td>
<td>5</td>
</tr>
<tr>
<td>E1</td>
<td>Not meeting CT requirement</td>
<td>28</td>
</tr>
<tr>
<td>E2</td>
<td>Cl2 not detectable in distribution system</td>
<td>47</td>
</tr>
<tr>
<td>E3</td>
<td>Insufficient residual in system with other disinfectant</td>
<td>0</td>
</tr>
<tr>
<td>F3</td>
<td>Total Coliforms in repeat sampling</td>
<td>9</td>
</tr>
<tr>
<td>F2E/F4/F5</td>
<td>E. Coli detected</td>
<td>2/0/1</td>
</tr>
<tr>
<td>F6</td>
<td>Viruses detected</td>
<td>0</td>
</tr>
<tr>
<td>F7</td>
<td>Protozoa detected</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>System compromised due to disaster</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>Waterborne disease contamination</td>
<td>0</td>
</tr>
</tbody>
</table>

¹ENVC BWA Summary, July 14, 2016
Boil Water Advisories – SOPs

• Department of Municipal Affairs and Environment have developed Standard Operating Procedures (SOPs) that can be used to as resources for lifting BWAs

• Can be found online:

http://www.mae.gov.nl.ca/waterres/quality/drinkingwater/sopbwa.html

• Other resources available including fact sheets on disinfection
Primary vs Secondary Disinfection

• Primary disinfection is the removal, inactivation or destruction of pathogenic organisms.

• Newfoundland and Labrador requires CT = 6 mg/L for primary disinfection

• Secondary disinfection is the maintenance of a disinfectant residual within the distribution system to prevent bacterial regrowth

• Newfoundland and Labrador requires a detectable free chlorine residual throughout the distribution system

• Typically primary and secondary disinfection are performed in one step
Common Disinfectant Chemicals

- Chlorine is the most common chemical used for disinfection of drinking water
- Maintains residual in distribution system to prevent biological regrowth
- Readily available
- Relatively inexpensive
- Typically added using:
 - Sodium hypochlorite (liquid)
 - Calcium hypochlorite (powder)
 - Chlorine gas
- All chemicals used in drinking water treatment must be NSF 60 Certified
The Chemistry of Chlorination

• $\text{Cl}_2 + \text{H}_2\text{O} \rightarrow \text{HOCl} + \text{HCl}$

 (Hypochlorous Acid) + (Hydrochloric Acid)

• Dissociation

 $\text{HOCl} \leftrightarrow \text{H}^+ + \text{OCl}^-$

 (Hypochlorite Ion)

• Balance of HOCl to OCl$^-$ dependant on pH
Alternative Disinfectants

- Other forms of disinfection can be used:
 - Primary Disinfection:
 - Ozone
 - Ultraviolet (UV)
 - Chlorine Dioxide
 - Secondary Disinfection
 - Chloramines
What is CT?

- Product of chlorine residual and time
- Concentration x time
- Pathogens are inactivated through exposure to a certain dose applied over a given amount of contact time
- Used to determine efficacy of disinfection practices
- CT required in Newfoundland: 6 mg·min/L

<table>
<thead>
<tr>
<th>pH</th>
<th>Log Inactivation</th>
<th>pH</th>
<th>Log Inactivation</th>
<th>pH</th>
<th>Log Inactivation</th>
<th>pH</th>
<th>Log Inactivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>0.5 1 1.5 2 2.5 3</td>
<td>6.5</td>
<td>0.5 1 1.5 2 2.5 3</td>
<td>7.0</td>
<td>0.5 1 1.5 2 2.5 3</td>
<td>7.5</td>
<td>0.5 1 1.5 2 2.5 3</td>
</tr>
<tr>
<td>0.5</td>
<td>23 46 92 115 137</td>
<td>0.5</td>
<td>27 54 81 108 135 163</td>
<td>0.5</td>
<td>33 65 98 130 163 195</td>
<td>0.5</td>
<td>40 79 119 158 198 237</td>
</tr>
<tr>
<td>0.6</td>
<td>24 47 71 94 118 141</td>
<td>0.6</td>
<td>28 56 84 112 140 169</td>
<td>0.6</td>
<td>33 67 101 134 168 200</td>
<td>0.6</td>
<td>40 80 120 160 200 239</td>
</tr>
<tr>
<td>0.8</td>
<td>24 48 72 96 120 146</td>
<td>0.8</td>
<td>29 57 86 114 143 172</td>
<td>0.8</td>
<td>34 68 102 136 170 205</td>
<td>0.8</td>
<td>41 82 123 164 205 246</td>
</tr>
<tr>
<td>1.0</td>
<td>25 49 74 98 123 148</td>
<td>1.0</td>
<td>29 59 89 118 148 176</td>
<td>1.0</td>
<td>35 70 105 140 175 210</td>
<td>1.0</td>
<td>42 84 126 168 210 253</td>
</tr>
<tr>
<td>1.2</td>
<td>25 51 77 102 128 152</td>
<td>1.2</td>
<td>30 60 90 120 150 180</td>
<td>1.2</td>
<td>36 72 108 144 180 216</td>
<td>1.2</td>
<td>43 86 129 172 216 259</td>
</tr>
<tr>
<td>1.4</td>
<td>26 52 78 104 130 157</td>
<td>1.4</td>
<td>31 61 92 122 153 184</td>
<td>1.4</td>
<td>37 74 111 148 185 221</td>
<td>1.4</td>
<td>44 89 134 178 226 269</td>
</tr>
<tr>
<td>1.6</td>
<td>26 52 78 104 130 157</td>
<td>1.6</td>
<td>32 63 95 126 158 189</td>
<td>1.6</td>
<td>38 75 113 150 188 226</td>
<td>1.6</td>
<td>46 91 137 182 228 273</td>
</tr>
<tr>
<td>1.8</td>
<td>27 54 81 108 133 162</td>
<td>1.8</td>
<td>32 64 96 128 160 193</td>
<td>1.8</td>
<td>39 77 116 154 193 231</td>
<td>1.8</td>
<td>47 93 140 186 233 279</td>
</tr>
<tr>
<td>2.0</td>
<td>28 55 83 110 138 165</td>
<td>2.0</td>
<td>33 66 99 132 165 197</td>
<td>2.0</td>
<td>39 79 119 158 198 236</td>
<td>2.0</td>
<td>48 95 143 190 238 286</td>
</tr>
<tr>
<td>2.2</td>
<td>29 56 84 112 140 166</td>
<td>2.2</td>
<td>34 67 101 134 164 201</td>
<td>2.2</td>
<td>40 81 122 162 203 242</td>
<td>2.2</td>
<td>50 99 149 198 248 297</td>
</tr>
<tr>
<td>2.4</td>
<td>29 57 85 114 143 172</td>
<td>2.4</td>
<td>34 68 102 136 170 205</td>
<td>2.4</td>
<td>41 82 123 164 205 247</td>
<td>2.4</td>
<td>50 99 149 198 248 298</td>
</tr>
<tr>
<td>2.6</td>
<td>29 58 87 116 145 175</td>
<td>2.6</td>
<td>35 70 103 140 175 209</td>
<td>2.6</td>
<td>42 84 126 166 210 252</td>
<td>2.6</td>
<td>51 101 152 202 253 304</td>
</tr>
<tr>
<td>2.8</td>
<td>30 59 89 118 148 178</td>
<td>2.8</td>
<td>36 71 107 142 178 213</td>
<td>2.8</td>
<td>43 86 129 172 215 257</td>
<td>2.8</td>
<td>52 103 155 206 258 310</td>
</tr>
<tr>
<td>3.0</td>
<td>30 60 90 120 150 181</td>
<td>3.0</td>
<td>36 72 108 144 180 217</td>
<td>3.0</td>
<td>44 87 131 174 218 261</td>
<td>3.0</td>
<td>53 105 158 210 263 316</td>
</tr>
</tbody>
</table>
Calculating CT

- Multiply free chlorine residual at end of contact chamber by the time that chlorine was in contact with water (by baffle factor)

<table>
<thead>
<tr>
<th>Baffling Factor</th>
<th>Inlet/Outlet</th>
<th>Intra-basin Baffles</th>
<th>Mixing</th>
<th>Notes</th>
<th>Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>Single or multiple unbaffled inlets and outlets</td>
<td>None</td>
<td>Minimal</td>
<td>Short circuiting and stagnation are likely to occur</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>Single or multiple baffled inlets and/or outlets</td>
<td>Some</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>Perforated inlet baffle, outlet weir, perforated launderers</td>
<td>Serpentine, perforated</td>
<td>Superior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
<td>Total</td>
<td>Plug-flow</td>
<td></td>
</tr>
</tbody>
</table>
Factors Impacting Chlorination

• pH
 • Ideal pH for chlorination is less than 7.0

• Temperature
 • Lower temperatures slow chlorine activity

• Turbidity
 • Can hide pathogens from disinfectant contact

• Concentration
 • Higher dose increases chlorine in system

• Chlorine demand
 • Organic matter, iron, manganese etc. can consume chlorine
Calculating Chlorine Dose

• Need to know the flow rate and the feed rate to determine chlorine dosage
• Flow rate – typically in m3/day or L/day
• Feed rate – typically in kg/day
• Dosage = (Feed rate x 1000)/Flow rate = mg/L
• Important to note expiry date on chemicals as the strength of chlorine can decline with age
Free vs Total Chlorine

• The amount of chlorine that is dosed at the plant is not equivalent to the amount of free chlorine residual
• Free chlorine is the chlorine that is available for disinfection in the distribution system
• Total chlorine is the sum of free chlorine and the chlorine that has already been consumed by chlorine demands
Measuring Chlorine Concentrations

- Field chlorine measurements typically measured using a handheld chlorine colorimeter
- DPD powdered reagent packet added to 10mL sample of water
- Test kits can be used for measuring both free and total chlorine
- Reagents have an expiry date, so make sure it is up to date
- Video on chlorine residual testing available at: https://www.youtube.com/user/NLWaterResources
Disinfection By-Products

- Disinfection By-Products (DBPs) are formed through reactions between a disinfectant and compounds in the water.
- Two most common groups:
 - THMs- maximum allowable concentration (MAC) in drinking water of 0.10 mg/L
 - HAAs- MAC = 0.08mg/L
- Can be controlled by reducing organic concentrations in the water before disinfection.
Questions